94 research outputs found

    Basal Cell Carcinoma: 10 Years of Experience

    Get PDF
    Introduction. Basal cell carcinoma (BCC) is a locally invasive malignant epidermal tumour. Incidence is increasing by 10% per year; incidence of metastases is minimal, but relapses are frequent (40%–50%). The complete excision of the BCC allows reduction of relapse. Materials and Methods. The study cohort consists of 1123 patients underwent surgery for basal cell carcinoma between 1999 and 2009. Patient and tumor characteristics recorded are: age; gender; localization (head and neck, trunk, and upper and lower extremities), tumor size, excisional margins adopted, and relapses. Results. The study considered a group of 1123 patients affected by basal cell carcinoma. Relapses occurred in 30 cases (2,67%), 27 out of 30 relapses occurred in noble areas, where peripheral margin was <3 mm. Incompletely excised basal cell carcinoma occurred in 21 patients (1,87%) and were treated with an additional excision. Discussion. Although guidelines indicate 3 mm peripheral margin of excision in BCC <2 cm, in our experience, a margin of less than 5 mm results in a high risk of incomplete excisions

    Expression of Parkin isoforms in human lymphomonocyte

    Get PDF
    Parkin (PARK2) is one of the largest gene in the human genome. Its mutations cause a form of autosomal recessive juvenile-onset of Parkinson disease (ARJPD) (1). To date, a repertoire of 21 parkin alternative splice variants has been identified. In the past, the role of the full-length parkin protein was extensively investigated and assessed also in human blood samples (2, 3). In contrast, less attention has been put on the other isoforms. In the present study, we investigated for the first time, the expression profile of parkin isoforms in three lymphomonocyte (LMN) subpopulations: T lymphocyte (CD2+), monocyte (CD14+) and B lymphocyte (CD19+). The expression of H1/H5 and H6 isoforms has been observed in total LMN homogenate, whereas H20 and H1/H5 variants were detected in all three LMN subpopulations by western blot analysis. The cellular distribution of parkin isoforms has been evaluated by immunofluorescence analysis. Although parkin is predominantly expressed in the cytoplasm, immunoreactivity has also been detected at nuclear and perinuclear level. Our data suggest that, the discovery of a specific expression profile of these isoforms into LMN of ARJP patients might allow developing new diagnostic tools for this neurodegenerative disease

    Stopping power of helium gas for ^9Be ions from 2 to 31 MeV

    Get PDF
    Abstract The stopping power of helium gas for 9Be ions from 2 to 31 MeV is experimentally determined using an indirect method. The residual energy of the 9Be beam as a function of the gas thickness is measured and the stopping power determined by differentiating the thickness–energy curve. The results are compared with predictions of the semi-empirical codes SRIM-2003 and MSTAR. Our data are in better agreement with the MSTAR calculations. The elastic scattering excitation function for the system 9Be + α, extracted using the thick target technique and our stopping power data, is in excellent agreement with the ones measured directly confirming the quality of our data

    Design and Status of the ELIMED Beam Line for Laser-Driven Ion Beams

    Get PDF
    Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. The peculiarities of laser-driven beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles, due to the wide energy spread, the angular divergence and the extremely intense pulses. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical applications) beamline, developed by INFN-LNS (Catania, Italy) and installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams in multidisciplinary applications. ELIMED will represent the first user's open transport beam line where a controlled laser-driven ion beam will be used for multidisciplinary and medical studies. In this paper, an overview of the beamline, with a detailed description of the main transport elements, will be presented. Moreover, a description of the detectors dedicated to diagnostics and dosimetry will be reported, with some preliminary results obtained both with accelerator-driven and laser-driven beams

    Interesting states in A = 10 mass region, populated in 10B + 10B nuclear reactions

    Get PDF
    The 10B+10B reactions are measured at beam energies of 50 and 72.2 MeV. The large spin of 10B nucleus (J= 3+) makes this reaction particularly suitable to populate high spin states in the exit channels. Population and decay of different states in A≈10 mass region is studied, and the results are discussed from the structure point of view. In particular, a new state in 12C at Ex= 24.4 MeV is observed to be strongly populated in the triple α-particle coincidences

    First operations of the LNS heavy ions facility

    Get PDF
    Abstract A heavy ion facility is now available at Laboratorio Nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15MV HVEC tandem and a K = 800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported

    The Online Observation Quality System for the ASTRI Mini-Array

    Get PDF
    The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF), aiming to construct and operate an array of nine Imaging Atmospheric Cherenkov Telescopes (IACTs) to study gamma-ray sources at very high energy (TeV) and to perform stellar intensity interferometry observations. This contribution describes the design and the technologies used by the ASTRI team to implement the Online Observation Quality System (OOQS). The main objective of the OOQS is to perform data quality analyses in real-time during Cherenkov and intensity interferometry observations to provide feedback to both the Central Control System and the Operator. The OOQS performs the analysis of key data quality parameters and can generate alarms to other sub-systems for a fast reaction to solve critical conditions. The results from the data quality analyses are saved into the Quality Archive for further investigations. The Operator can visualise the OOQS results through the Operator Human Machine Interface as soon as they are produced. The main challenge addressed by the OOQS design is to perform online data quality checks on the data streams produced by nine telescopes, acquired by the Array Data Acquisition System and forwarded to the OOQS. In the current OOQS design, the Redis in-memory database manages the data throughput generated by the telescopes, and the Slurm workload scheduler executes in parallel the high number of data quality analyses.Comment: 8 pages, 3 figures, Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Berlin, German

    Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Get PDF
    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described

    Thick-target inverse kinematic method in order to investigate alpha-clustering in212Po

    Get PDF
    The inverse-kinematic thick-target method has been used in order to investigate 212Po alpha-structure by the elastic scattering of 208Pb on 4He target. A 208Pb beam, accelerated by the Superconducting Cyclotron (CS) of Laboratori Nazionali del Sud - INFN, at the incident energy of 10.1 A MeV was impinging onto a specifically designed 4He gas cell, two meter long. The gas cell wasacting both as target and as beam degrader, stopping the beam before reaching the alpha-particle detection system placed at 0° with respect to the beam axis. In order to disentangle the elastic contribution from other reaction channels (e.g. inelastic scattering) a microchannel plate was used to measure the Time of Flight(ToF) of both the 208Pb beam particles and the ejectiles along the gas cell. The 208Pbstopping power in the 4He gas target was also measured, as a key ingredient in order to establish theinteraction point inside the gas cell, in turn determining the solid angle covered by the detector. In the following, the experimental technique will be described, and the results of a preliminary data analysis will be shown

    Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement

    Get PDF
    Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on β-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported
    corecore